集合框架
集合框架概述
一方面, 面向对象语言对事物的体现都是以对象的形式,为了方便对多个对象的操作,就要对对象进行存储。另一方面,使用Array存储对象方面具有一些弊端,而Java 集合就像一种容器,可以动态地把多个对象的引用放入容器中。
- 数组在内存存储方面的特点:
- 数组初始化以后,长度就确定了。
- 数组声明的类型,就决定了进行元素初始化时的类型
- 数组在存储数据方面的弊端:
- 数组初始化以后,长度就不可变了,不便于扩展
- 数组中提供的属性和方法少,不便于进行添加、删除、插入等操作,且效率不高。同时无法直接获取存储元素的个数
- 数组存储的数据是有序的、可以重复的。—->存储数据的特点单一
- 数组在内存存储方面的特点:
Java 集合类可以用于存储数量不等的多个对象,还可用于保存具有映射关系的关联数组。
Java 集合可分为 Collection 和 Map 两种体系
Collection接口:单列数据,定义了存取一组对象的方法的集合
- List:元素有序、可重复的集合
- Set:元素无序、不可重复的集合
Map接口:双列数据,保存具有映射关系“key-value对”的集合
JDK提供的集合API位于java.util包内
Collection接口继承树:
Map接口继承树:
Collection接口方法
Collection 接口是 List、Set 和 Queue 接口的父接口,该接口里定义的方法既可用于操作 Set 集合,也可用于操作 List 和 Queue 集合。
JDK不提供此接口的任何直接实现,而是提供更具体的子接口(如:Set和List)实现。
在 Java5 之前,Java 集合会丢失容器中所有对象的数据类型,把所有对象都当成 Object 类型处理;从 JDK 5.0 增加了泛型以后,Java 集合可以记住容器中对象的数据类型。
1、添加
add(Object obj)
addAll(Collection coll)
2、获取有效元素的个数
int size()
3、清空集合
void clear()
4、是否是空集合
boolean isEmpty()
5、是否包含某个元素
boolean contains(Object obj):是通过元素的equals方法来判断是否是同一个对象。
boolean containsAll(Collection c):也是调用元素的equals方法来比较的。拿两个集合的元素挨个比较。
6、删除
boolean remove(Object obj) :通过元素的equals方法判断是否是要删除的那个元素。只会删除找到的第一个元素
boolean removeAll(Collection coll):取当前集合的差集
7、取两个集合的交集
boolean retainAll(Collection c):把交集的结果存在当前集合中,不影响c
8、集合是否相等
boolean equals(Object obj)
9、转成对象数组
Object[] toArray()
10、获取集合对象的哈希值
hashCode()
11、遍历
iterator():返回迭代器对象,用于集合遍历
方法测试:
1 | package com.nanzx.collection; |
Iterator迭代器接口
使用 Iterator 接口遍历集合元素
Iterator对象称为迭代器(设计模式的一种),主要用于遍历 Collection 集合中的元素。
GOF给迭代器模式的定义为:提供一种方法访问一个容器(container)对象中各个元素,而又不需暴露该对象的内部细节。迭代器模式,就是为容器而生。类似于“公交车上的售票员”、“火车上的乘务员”、“空姐”。
Collection接口继承了java.lang.Iterable接口,该接口有一个iterator()方法,那么所有实现了Collection接口的集合类都有一个iterator()方法,用以返回一个实现了Iterator接口的对象。
Iterator 仅用于遍历集合,Iterator 本身并不提供承装对象的能力。如果需要创建Iterator 对象,则必须有一个被迭代的集合。
集合对象每次调用iterator()方法都得到一个全新的迭代器对象,默认游标都在集合的第一个元素之前。
1 | package com.nanzx.collection; |
- 注意:
- Iterator可以删除集合的元素,但是是遍历过程中通过迭代器对象的remove方法,不是集合对象的remove方法。
- 如果还未调用next()或在上一次调用 next 方法之后已经调用了 remove 方法,再调用remove都会报IllegalStateException。
使用 foreach 循环遍历集合元素
Java 5.0 提供了 foreach 循环迭代访问 Collection 和 数组。
遍历操作不需获取Collection或数组的长度,无需使用索引访问元素。
遍历集合的底层调用Iterator完成操作。
1 | package com.nanzx.collection; |
List接口
概述
List接口框架
- Collection接口:单列集合,用来存储一个一个的对象
List接口:存储有序的、可重复的数据。 –> 动态数组,替换原有的数组,实现类要重写equals()
- ArrayList:List接口的主要实现类;线程不安全,效率高;底层使用Object[] elementData存储
- LinkedList:对于频繁的插入、删除操作,使用此类效率比ArrayList高;底层使用双向链表存储
- Vector:List接口的古老实现类;线程安全,效率低;底层使用Object[] elementData存储
源码分析
ArrayList的源码分析:
① jdk 7情况下
ArrayList list = new ArrayList(); //底层创建了长度是10的Object[]数组elementData
list.add(123);//elementData[0] = new Integer(123);
list.add(11);//如果此次的添加导致底层elementData数组容量不够,则扩容。
默认情况下,扩容为原来的容量的1.5倍,同时需要将原有数组中的数据复制到新的数组中。
结论:建议开发中使用带参的构造器:ArrayList list = new ArrayList(int capacity)
② jdk 8中ArrayList的变化:
ArrayList list = new ArrayList();//底层Object[] elementData初始化为{}.并没有创建长度为10的数组
list.add(123);//第一次调用add()时,底层才创建了长度10的数组,并将数据123添加到elementData[0]
后续的添加和扩容操作与jdk 7 无异。
小结:jdk7中的ArrayList的对象的创建类似于单例的饿汉式,而jdk8中的ArrayList的对象的创建类似于单例的懒汉式,延迟了数组的创建,节省内存。
注意:Arrays.asList(…) 方法返回的 List 集合,既不是 ArrayList 实例,也不是Vector 实例。 Arrays.asList(…) 返回值是一个固定长度的 List 集合。
LinkedList的源码分析:
LinkedList list = new LinkedList(); 内部声明了Node类型的first和last属性,默认值为null,没有声明数组
list.add(123); //将123封装到Node中,创建了Node对象。
其中,Node定义为:
1 | private static class Node<E> { // 体现了LinkedList的双向链表的说法 |
新增方法:
void addFirst(Object obj)
void addLast(Object obj)
Object getFirst()
Object getLast()
Object removeFirst()
Object removeLast()
Vector的源码分析:
jdk7和jdk8中通过Vector()构造器创建对象时,底层都创建了长度为10的数组。
在扩容方面,默认扩容为原来的数组长度的2倍。
新增方法:
void addElement(Object obj)
void insertElementAt(Object obj,int index)
void setElementAt(Object obj,int index)
void removeElement(Object obj)
void removeAllElements()
接口方法
List除了从Collection集合继承的方法外,List 集合里添加了一些根据索引来操作集合元素的方法。
void add(int index, Object ele):在index位置插入ele元素
boolean addAll(int index, Collection eles):从index位置开始将eles中的所有元素添加进来
Object get(int index):获取指定index位置的元素
int indexOf(Object obj):返回obj在集合中首次出现的位置
int lastIndexOf(Object obj):返回obj在当前集合中末次出现的位置
Object remove(int index):移除指定index位置的元素,并返回此元素
Object set(int index, Object ele):设置指定index位置的元素为ele
List subList(int fromIndex, int toIndex):返回从fromIndex到toIndex位置的左闭右开区间子集合
总结:常用方法
增:add(Object obj)
删:remove(int index) / remove(Object obj)
改:set(int index, Object ele)
查:get(int index)
插:add(int index, Object ele)
长度:size()
遍历:① Iterator迭代器方式 ② 增强for循环 ③ 普通的循环
经典面试题
1 |
|
这里考察的是updateList调用的remove方法是Collection接口的方法还是List接口的方法
List:remove(int index) / Collection:remove(Object obj)
这里显然调用的是List的remove方法,删除索引为2的元素,如果想删除元素值为2的元素,则是:
list.remove(new Integer(2))
ArrayList和LinkedList的异同:
二者都线程不安全,相对线程安全的Vector,执行效率高。
此外,ArrayList是实现了基于动态数组的数据结构,LinkedList基于链表的数据结构。对于随机访问get和set,ArrayList绝对优于LinkedList,因为LinkedList要移动指针。对于新增和删除操作add(特指插入)和remove,LinkedList比较占优势,因为ArrayList要移动数据。
ArrayList和Vector的区别:
Vector和ArrayList几乎是完全相同的,唯一的区别在于Vector是同步类(synchronized),属于强同步类。因此开销就比ArrayList要大,访问要慢。正常情况下,大多数的Java程序员使用ArrayList而不是Vector,因为同步完全可以由程序员自己来控制。Vector每次扩容请求其大小的2倍空间,而ArrayList是1.5倍。Vector还有一个子类Stack。
Set接口
概述
- Collection接口:单列集合,用来存储一个一个的对象
- Set接口:存储无序的、不可重复的数据 –>高中讲的“集合”
- HashSet:作为Set接口的主要实现类;线程不安全的;可以存储null值.
- LinkedHashSet:作为HashSet的子类;遍历其内部数据时,可以按照添加的顺序遍历,效率高于HashSet
- TreeSet:可以按照添加对象的指定属性,进行排序。
- HashSet:作为Set接口的主要实现类;线程不安全的;可以存储null值.
- Set接口:存储无序的、不可重复的数据 –>高中讲的“集合”
Set接口中没有额外定义新的方法,使用的都是Collection中声明过的方法。
要求:向Set(主要指:HashSet、LinkedHashSet)中添加的数据,其所在的类一定要重写hashCode()和equals(),重写的hashCode()和equals()尽可能保持一致性:相等的对象必须具有相等的散列码。
hashCode() 和 equals()
重写 hashCode() 方法的基本原则:
在程序运行时,同一个对象多次调用 hashCode() 方法应该返回相同的值。
当两个对象的 equals() 方法比较返回 true 时,这两个对象的 hashCode() 方法的返回值也应相等。
对象中用作 equals() 方法比较的 Field,都应该用来计算 hashCode 值。
重写 equals() 方法的基本原则:
以自定义的Customer类为例,何时需要重写equals()?
默认情况下,也就是从超类Object继承而来的equals方法与‘==’是完全等价的,比较的都是对象的内存地址,但我们可以重写equals方法,使其按照我们的需求的方式进行比较,如String类重写了equals方法,使其比较的是字符的序列,而不再是内存地址。
当一个类有自己特有的“逻辑相等”概念,**当改写equals()的时候,总是要改写hashCode()**。根据一个类的equals方法(只改写了equals()方法),两个截然不同的实例有可能在逻辑上是相等的,但是,根据继承的Object.hashCode()方法,它们仅仅是两个对象。因此,违反了“相等的对象必须具有相等的散列码”,需要重写hashCode方法。
结论:复写equals方法的时候一般都需要同时复写hashCode方法。通常参与计算hashCode的对象的属性也应该参与到equals()中进行计算。
Eclipse/IDEA工具里hashCode() 和 equals() 的重写
1 |
|
为什么用Eclipse/IDEA复写hashCode方法,有31这个数字?
选择系数的时候要选择尽量大的系数。因为如果计算出来的hash地址越大,所谓的“冲突”就越少,查找起来效率也会提高。(减少冲突)
并且31只占用5bits,相乘造成数据溢出的概率较小。
31可以 由i*31== (i<<5)-1来表示,现在很多虚拟机里面都有做相关优化。(提高算法效率)
31是一个素数,素数作用就是如果我用一个数字来乘以这个素数,那么最终出来的结果只能被素数本身和被乘数还有1来整除!(减少冲突)
HashSet
HashSet 按 Hash 算法来存储集合中的元素,因此具有很好的存取、查找、删除性能。
HashSet 具有以下特点:
不能保证元素的排列顺序
HashSet 不是线程安全的
集合元素可以是 null
HashSet 集合判断两个元素相等的标准:两个对象通过 hashCode() 方法比较相等,并且两个对象的 equals() 方法返回值也相等。
添加元素的过程:
- 我们向HashSet中添加元素a,首先调用元素a所在类的hashCode()方法,计算元素a的哈希值,此哈希值接着通过某种散列函数计算出在HashSet底层数组中的存放位置(即为:索引位置)
- 判断数组此位置上是否已经有元素:
- 如果此位置上没有其他元素,则元素a添加成功。 —>情况1
- 如果此位置上有其他元素b(或以链表形式存在的多个元素),则比较元素a与元素b的hash值:
- 如果hash值不相同,则元素a添加成功。—>情况2
- 如果hash值相同,进而需要调用元素a所在类的equals()方法:
equals()返回true,元素a添加失败
equals()返回false,则元素a添加成功。—>情况3
对于添加成功的情况2和情况3而言:元素a与已经存在指定索引位置上数据以链表的方式存储。
jdk 7 :元素a放到数组中,指向数组中原来的元素。
jdk 8 :原来的元素在数组中,指向元素a。
HashSet底层:数组+链表的结构
底层数组,初始容量为16,当如果使用率超过0.75,(16*0.75=12)就会扩大容量为原来的2倍。(16扩容为32,依次为64,128....等)
LinkedSet
LinkedHashSet 是 HashSet 的子类
LinkedHashSet 根据元素的 hashCode 值来决定元素的存储位置,但它同时使用双向链表维护元素的次序,这使得元素看起来是以插入顺序保存的。
LinkedHashSet 插入性能略低于 HashSet,但在迭代访问 Set 里的全部元素时有很好的性能。
LinkedHashSet 不允许集合元素重复。
TreeSet
TreeSet 是 SortedSet 接口的实现类,TreeSet 可以确保集合元素处于排序状态。
TreeSet底层使用红黑树结构存储数据
新增的方法如下: (了解)
Comparator comparator()
Object first()
Object last()
Object lower(Object e)
Object higher(Object e)
SortedSet subSet(fromElement, toElement)
SortedSet headSet(toElement)
SortedSet tailSet(fromElement)
TreeSet 两种排序方法:自然排序和定制排序。默认情况下,TreeSet 采用自然排序。
自然排序:TreeSet 会调用集合元素的 compareTo(Object obj) 方法来比较元素之间的大小关系,然后将集合元素按升序(默认情况)排列。
如果试图把一个对象添加到 TreeSet 时,则该对象的类 必须实现 Comparable 接口。
实现 Comparable 的类必须实现 compareTo(Object obj) 方法,两个对象即通过compareTo(Object obj) 方法的返回值来比较大小。
Comparable 的典型实现:
BigDecimal、BigInteger 以及所有的数值型对应的包装类:按它们对应的数值大小进行比较
Character:按字符的 unicode 值来进行比较
Boolean:true 对应的包装类实例大于 false 对应的包装类实例
String:按字符串中字符的 unicode 值进行比较
Date、Time:后边的时间、日期比前面的时间、日期大
注意事项:
- 向 TreeSet 中添加元素时,只有第一个元素无须比较compareTo()方法,后面添加的所有元素都会调用compareTo()方法进行比较。
- 因为只有相同类的两个实例才会比较大小,所以向 TreeSet 中添加的应该是同一个类的对象。
- 对于 TreeSet 集合而言,它判断两个对象是否相等的唯一标准是:两个对象通过 compareTo(Object obj) 方法比较返回值,如果相等则返回0。
- 当需要把一个对象放入 TreeSet 中,重写该对象对应的 equals() 方法时,应保证该方法与 compareTo(Object obj) 方法有一致的结果:如果两个对象通过equals() 方法比较返回 true,则通过 compareTo(Object obj) 方法比较应返回 0。
定制排序:TreeSet的自然排序要求元素所属的类实现Comparable接口,如果元素所属的类没有实现Comparable接口,或不希望按照升序(默认情况)的方式排列元素或希望按照其它属性大小进行排序,则考虑使用定制排序。定制排序,通过Comparator接口来实现。需要重写**compare(T o1,T o2)**方法。
利用int compare(T o1,T o2)方法,比较o1和o2的大小:如果方法返回正整数,则表示o1大于o2;如果返回0,表示相等;返回负整数,表示o1小于o2。
要实现定制排序,需要将实现Comparator接口的实例作为形参传递给TreeSet的构造器。
此时,仍然只能向TreeSet中添加类型相同的对象。否则发生ClassCastException异常。
使用定制排序判断两个元素相等的标准是:通过Comparator比较两个元素返回了0。
1 | package com.nanzx.collection; |
1 | package com.nanzx.collection; |
经典面试题
在List内去除重复数字值,要求尽量简单:
1 | public static List duplicateList(List list) { |
注意:如果list的元素是自定义的类,还需重写hashcode()和equals()
1 | package com.nanzx.collection; |
运行结果:
[Person{name=’CC’, age=1001}, Person{name=’BB’, age=1002}]
[Person{name=’CC’, age=1001}, Person{name=’CC’, age=1001}, Person{name=’BB’, age=1002}]
[Person{name=’CC’, age=1001}, Person{name=’CC’, age=1001}, Person{name=’AA’, age=1001}, Person{name=’BB’, age=1002}]
思路请看HashSet添加元素的过程。
Map接口
概述
- Map:双列数据,存储key-value对的数据 —类似于高中的函数:y = f(x)
- HashMap:作为Map的主要实现类;线程不安全的,效率高;可以存储null的key和value。
- LinkedHashMap:保证在遍历map元素时,可以按照添加的顺序实现遍历。对于频繁的遍历操作,此类执行效率高于HashMap。
- TreeMap:保证按照添加的key-value对进行排序,实现排序遍历。此时考虑key的自然排序或定制排序,底层使用红黑树
- Hashtable:作为古老的实现类;线程安全的,效率低;不能存储null的key和value
- Properties:常用来处理配置文件。key和value都是String类型。
- HashMap:作为Map的主要实现类;线程不安全的,效率高;可以存储null的key和value。
key 和 value 之间存在单向一对一关系,即通过指定的 key 总能找到唯一的、确定的 value。
Map中的key:无序的、不可重复的,使用Set存储所有的key —> key所在的类要重写equals()和hashCode() (以HashMap为例)。
Map中的value:无序的、可重复的,使用Collection存储所有的value —>value所在的类要重写equals()
一个键值对:key-value构成了一个Entry对象。
Map中的entry:无序的、不可重复的,使用Set存储所有的entry。
HashMap 判断两个 key 相等的标准是:两个 key 通过 equals() 方法返回 true,hashCode 值也相等。
HashMap 判断两个 value相等的标准是:两个 value 通过 equals() 方法返回 true。
源码分析
存储结构:
JDK 7及以前版本:HashMap是数组+链表结构(即为链地址法)
JDK 8版本发布以后:HashMap是数组+链表+红黑树实现。
HashMap的底层实现原理
以jdk7为例说明:
HashMap map = new HashMap();//在实例化以后,底层创建了长度是16的一维数组Entry[] table。
map.put(key1,value1);
- 首先,调用key1所在类的hashCode()计算key1哈希值,此哈希值经过某种算法计算以后,得到在Entry数组中的存放位置。
如果此位置上的数据为空,此时的key1-value1添加成功。 —-情况1
如果此位置上的数据不为空,(意味着此位置上存在一个或多个数据(以链表形式存在)),比较key1和已经存在的一个或多个数据的哈希值:
如果key1的哈希值与已经存在的数据的哈希值都不相同,此时key1-value1添加成功。—-情况2
如果key1的哈希值和已经存在的某一个数据(key2-value2)的哈希值相同,继续比较:调用key1所在类的equals(key2)方法比较:
①如果equals()返回false:此时key1-value1添加成功。—-情况3
②如果equals()返回true:使用value1替换value2。
补充:关于情况2和情况3:此时key1-value1和原来的数据以链表的方式存储。
在不断的添加过程中,会涉及到扩容问题,当**超出临界值(且要存放的位置非空)**时扩容。默认的扩容方式:扩容为**原来容量的2倍**,并将原有的数据复制过来。
jdk8相较于jdk7在底层实现方面的不同:
new HashMap();底层没有创建一个长度为16的数组
jdk 8底层的数组是:Node[],而非Entry[]
首次调用put()方法时,底层创建长度为16的数组
jdk7底层结构只有:数组+链表。jdk8中底层结构:数组+链表+红黑树。
形成链表时,七上八下
- jdk7:新的元素指向旧的元素,新添加的元素作为链表的head。
- jdk8:旧的元素指向新的元素,新添加的元素作为链表的last,或树的叶子结点。
当数组的某一个索引位置上的元素以链表形式存在的数据个数 > 8 且当前数组的长度 > 64时,此时此索引位置上的所数据改为使用红黑树存储。
- 当HashMap中的其中一个链的对象个数如果达到了8个,此时如果capacity没有达到64,那么HashMap会先扩容解决,如果已经达到了64,那么这个链会变成树,结点类型由Node变成TreeNode类型。当然,如果当映射关系被移除后,下次resize方法时判断树的结点个数低于6个,也会把树再转为链表。
LinkedHashMap的底层实现原理
HashMap中的内部类:Node
1 | static class Node<K,V> implements Map.Entry<K,V> { |
LinkedHashMap中的内部类:Entry
1 | static class Entry<K,V> extends HashMap.Node<K,V> { |
源码中的重要常量
DEFAULT_INITIAL_CAPACITY : HashMap的默认容量,16
MAXIMUM_CAPACITY:HashMap的最大支持容量,2^30
DEFAULT_LOAD_FACTOR:HashMap的默认加载因子:0.75
threshold:扩容的临界值=容量*填充因子:16 * 0.75 => 12
TREEIFY_THRESHOLD:Bucket(桶)中链表长度大于该默认值,转化为红黑树:8
MIN_TREEIFY_CAPACITY:桶中的Node被树化时最小的hash表容量:64
table:存储元素的数组,总是2的n次幂
entrySet:存储具体元素的集
size:HashMap中存储的键值对的数量
modCount:HashMap扩容和结构改变的次数
面试题
负载因子值的大小,对HashMap有什么影响
- 负载因子的大小决定了HashMap的数据密度。
负载因子越大密度越大,发生碰撞的几率越高,数组中的链表越容易长,造成查询或插入时的比较次数增多,性能会下降。
负载因子越小,就越容易触发扩容,数据密度也越小,意味着发生碰撞的几率越小,数组中的链表也就越短,查询和插入时比较的次数也越小,性能会更高。但是会浪费一定的内容空间。而且经常扩容也会影响性能,建议初始化预设大一点的空间。
按照其他语言的参考及研究经验,会考虑将负载因子设置为0.7~0.75,此时平均检索长度接近于常数。
接口方法
添加、删除、修改操作:
Object put(Object key,Object value):将指定key-value添加到(或修改)当前map对象中
void putAll(Map m):将m中的所有key-value对存放到当前map中
Object remove(Object key):移除指定key的key-value对,并返回value
void clear():清空当前map中的所有数据
元素查询的操作:
Object get(Object key):获取指定key对应的value
boolean containsKey(Object key):是否包含指定的key
boolean containsValue(Object value):是否包含指定的value
int size():返回map中key-value对的个数
boolean isEmpty():判断当前map是否为空
boolean equals(Object obj):判断当前map和参数对象obj是否相等
元视图操作的方法:
Set keySet():返回所有key构成的Set集合
Collection values():返回所有value构成的Collection集合
Set entrySet():返回所有key-value对构成的Set集合
1 | package com.nanzx.map; |
TreeMap
TreeMap存储 Key-Value 对时,需要根据 key-value 对进行排序。TreeMap 可以保证所有的 Key-Value 对处于有序状态。
TreeMap底层使用红黑树结构存储数据
TreeMap 的 Key 的排序:
- 自然排序:TreeMap 的所有的 Key 必须实现 Comparable 接口,而且所有的 Key 应该是同一个类的对象,否则将会抛出 ClasssCastException
- 定制排序:创建 TreeMap 时,传入一个 Comparator 对象,该对象负责对TreeMap 中的所有 key 进行排序。此时不需要 Map 的 Key 实现Comparable 接口
TreeMap判断两个key相等的标准:两个key通过compareTo()方法或者compare()方法返回0。
Properties
1 | package com.nanzx.map; |
1 | name=阿楠 |
Collections工具类
Collections 是一个操作 Set、List 和 Map等集合的工具类(操作数组的工具类:Arrays)
Collections 中提供了一系列静态的方法对集合元素进行排序、查询和修改等操作,还提供了对集合对象设置不可变、对集合对象实现同步控制等方法
排序操作:(均为static方法)
- reverse(List):反转 List 中元素的顺序
- shuffle(List):对 List 集合元素进行随机排序
- sort(List):根据元素的自然顺序对指定 List 集合元素按升序排序
- sort(List,Comparator):根据指定的 Comparator 产生的顺序对 List 集合元素进行排序
- swap(List,int, int):将指定 list 集合中的 i 处元素和 j 处元素进行交换
查找、替换
- Object max(Collection):根据元素的自然顺序,返回给定集合中的最大元素
- Object max(Collection,Comparator):根据 Comparator 指定的顺序,返回给定集合中的最大元素
- Object min(Collection)
- Object min(Collection,Comparator)
- int frequency(Collection,Object):返回指定集合中指定元素的出现次数
- void copy(List dest,List src):将src中的内容复制到dest中
- boolean replaceAll(List list,Object oldVal,Object newVal):使用新值替换List 对象的所有旧值
Collections 类中提供了多个 synchronizedXxx() 方法,该方法可使将指定集合包装成线程同步的集合,从而可以解决多线程并发访问集合时的线程安全问题
1 | package com.nanzx.collection; |